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XXXX  Development of a new generation of low groove density blazed echelle gratings optimized for MIGHTI, a space borne spatial heterodyne interferometer operating in the visible and near infrared is described.  Special demands are placed on the wavefront accuracy, groove profile, and efficiency of these gratings.  These demands required a new ruling for this application with significant improvements over existing gratings.  Properties of a new generation of highly efficient, plane gratings with 64 grooves/mm blazed at 8.2° are reported. 
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1. INTRODUCTION The Ionospheric Connection Explorer (ICON) project is a NASA sponsored Explorer class satellite mission.  It aims to explore the boundary between Earth and space by probing the extreme variability of Earth's ionosphere with in-situ and remote-sensing instruments. A principal instrument on ICON is the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) built at the Naval Research Laboratory and tasked to remotely measure the neutral wind field and temperatures at altitudes between 90 and 300 km [1].  
 The MIGHTI instrument uses the Doppler shift of the naturally occurring atomic oxygen red (630.0nm) and green (557.7nm) lines to measure wind velocities. The temperature in the lower thermosphere is derived from the spectral shape of the molecular oxygen A band around 760nm [2, 3], which is sampled by narrow band interference filters at the MIGHTI array detectors. The wind vectors are derived by making two perpendicular line of sight wind speed measurements 45˚ and 135˚ in azimuth from the satellite ram direction. MIGHTI uses two identical field widened Michelson interferometers and uses the fringe phase shifts resulting from the Doppler shifts of the 

emission lines to derive the line of sight wind velocities. This concept is fundamentally similar to the technique employed by the highly successful WINDII instrument on UARS [4], which used an interferometer with a movable mirror in one interferometer arm to sample several phase points of a monochromatic fringe.   MIGHTI uses a modified Spatial Heterodyne Spectroscopy (SHS) technique called Doppler Asymmetric Spatial Heterodyne (DASH) spectroscopy, which eliminates moving interferometer parts by replacing the interferometer mirrors with fixed tilted gratings and which produces an interferogram around the optical path difference for which the Doppler shift sensitivity is the largest [5-10].  One can think of the individual grating facets as small mirrors, all at different optical path differences, that are imaged on the array detector, where many dozens of optical path difference samples of the interferogram are recorded simultaneously. Figures 1 and 2 give schematics of the DASH interferometer .  The DASH technique provides several advantages, including the monolithic design and the ability to simultaneously observe a 
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measurement was always made at the Littrow angle for the order in question. Various unpolarized lasers operating at 632.8, 557.7 and 543nm were used to measure the grating efficiency in the red and green bands.  Figure 6 shows a schematic of the measurement geometry.  The lasers reflect from near the top edge of a mirror and onto the grating.  In this “MIGHTI configuration”, the grating is aligned to put 7th (red) or 8th (green) order at the Littrow condition for an angle of 8.2°. The grating was also tilted out of plane by 0.4° so diffracted rays can pass above the top edge of the mirror and are then measured with a power meter scanning the locations of the different orders.  Incident laser power was measured by moving the power meter to the dashed location in Figure 6.  Laser spots were 5-6mm in diameter at the grating and at the power meter, underfilling the 9.5mm diameter power meter by a comfortable margin. 

 Figure 6.  Schematic of arrangement for measuring grating efficiency in the MIGHTI configuration near 7th and 8th orders for the red and green sources, respectively. A 45° mirror used near its edge (EM) directs the laser beam to the grating.  The angle of incidence was fixed at 8.2° and the power meter moved through the orders or to the dashed location to measure incident power. The Littrow configuration was similar, except the power meter was stationary and the grating was rotated through many orders.  Table 2 summarizes measured efficiencies of several of these sister replica gratings made with lasers near the working wavelengths of the gratings and in orders near the working orders. 
 

 
 
 
 
 
 
 
 
 
 

Table 2.  Efficiency measurements of several sister gratings in the 
MIGHTI configuration. 
 Efficiency (%) 

 632.8 nm 543.4 nm 557.7 
nm 

Order FM-4 FM-5 FM-6 FM-7* EM-1 EM-2   FM-4 FM-5 FM-6 FM-7*

4 1.49 1.9 1.7  0.57

5 1.42 2.2 2.0  1.16

6 0.09 0.10 0.06 0.63 0.1 0.1  1.53

7 71.6 71.2 70.8 69.9 72.1 72.5 2.6 2.3 2.2 0.18

8 3.2 3.2 3.1 5.35 3.8 3.6 50.4 50.1 51.7 61.6

9 0.18 0.3 0.3 8.8 8.5 7.9 3.72

10 0.10 0.1 0.1  0.27These values are not adjusted for the reflectivity of the gold coating, 93% at 632.8nm, 77% at 543nm, and 83.5% at 558nm [15]. *The FM-7 measurements were made with the frequency stabilized lasers as detailed below. 
 
A.  FM-7 Efficiency at 557.7nm, 632.8nm, MIGHTI configuration The measurement geometry was as follows:  Two frequency stabilized and polarized lasers operating at 557nm and 632.8nm were used to measure the FM-7 grating efficiency in wavelength bands of MIGHTI.  The final setup is as in Figure 6, but a beamsplitter was introduced into the incident beam and a second power meter added to monitor the brightness of the lasers, which in the case of the green laser varied significantly with time.  For the green laser, a solid state device, a collimating lens, a faraday rotator, and a narrow band filter were added to help eliminate back reflections into the laser and to eliminate an unwanted infra-red emission from the laser.  The grating was aligned to put either 7th or 8th order at the Littrow angle (α = 8.2°).  These lasers were aligned with their polarization at 45° to the grating grooves.  By using the two channel power meter, the data were corrected for laser power variations.  By logging the data with a computer, more than 100 individual readings were averaged for each data point.  The accuracy achieved was better than 0.1% for all but the faintest orders. Table 3 and Figure  7 report measured efficiencies for all accessible orders of grating FM-7.  Typical stray light levels observed between orders were less than 0.1% of the nearby orders. 

 

 

 

 

 

 

 

 

 



 
Table 3.  Measured Efficiency of Grating FM-7. 

Order Grating efficiency Order Grating efficiency  557.7nm 632.8nm  557.7nm 632.8nm-23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4  

7.60E-04 2.00E-03 1.80E-03 1.51E-03 2.44E-03 3.58E-03 1.78E-03 2.44E-03 3.06E-03 1.96E-03 1.95E-03 1.01E-03 1.24E-03 1.77E-03 1.49E-03 7.05E-04 4.82E-04 9.55E-04 1.28E-03 1.31E-03 8.33E-04 3.07E-04 4.89E-04 1.29E-03 1.90E-03 2.16E-03 3.00E-03 5.66E-03 

   3.24E-03 1.92E-03 3.86E-03 3.97E-03 2.77E-03 4.99E-03 3.88E-03 2.15E-03 2.68E-03 3.40E-03 2.64E-03 1.50E-03 1.22E-03 1.77E-03 2.68E-03 3.19E-03 2.58E-03 1.21E-03 6.63E-04 1.65E-03 3.16E-03 4.38E-03 6.05E-03 9.54E-03 1.49E-02 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

1.16E-02 1.53E-02 1.83E-03 6.16E-01 3.72E-02 2.75E-03 9.79E-04 1.12E-03 1.32E-03 9.34E-04 3.98E-04 1.41E-04 1.60E-04 2.35E-04 2.60E-04 2.11E-04 1.42E-04 9.95E-05 7.65E-05 6.87E-05 5.91E-05 4.82E-05 3.74E-05 2.76E-05 2.44E-05 2.40E-05 1.96E-05 

1.42E-026.33E-036.99E-015.35E-021.76E-031.05E-031.43E-031.48E-039.84E-044.87E-042.77E-043.22E-043.90E-044.02E-043.33E-042.45E-041.81E-041.46E-041.33E-041.33E-041.26E-041.11E-049.07E-057.15E-05 

 

 

 Figure 7.  Measured and calculated efficiencies for grating FM-7 at a fixed 8.2° angle of incidence.  Peak efficiency is in 7th order(A) at 633nm and 8th order (B) at 558nm. 
B.  FM-7 Efficiency at 632.8nm, Littrow configuration A second detailed set of 633nm efficiency measurements (see Table 4) were made with the grating mounted on a rotary stage so it could be scanned through many orders in the Littrow configuration with a fixed detector.  Measurements of this sort were made on FM-7 at NRL and on EM-1 at St. Cloud State University. 

 

Table 4.  Grating FM-7 efficiency at 632.8nm (unpolarized) in the 
Littrow configuration. 

Order 
 

Obs. 
Effici-
ency  

Calc. 
Effici-
ency  

Littrow 
angle 

(°) 
Order 

 
Obs. 

Effici-
ency  

Calc. 
Effici-
ency  

Littrow 
angle 

(°) 

-48 5.13E-04 -77.5 0 3.25E-03 5.63E-04 0.0 

-47 1.13E-03 -72.9 1 3.54E-03 2.78E-03 1.2 

-46 5.31E-03 -69.3 2 4.35E-03 7.47E-03 2.3 

-45 6.59E-03 -66.2 3 6.69E-03 1.45E-02 3.5 

-44 1.73E-02 -63.5 4 1.02E-02 2.74E-02 4.7 

-43 4.27E-02 -61.0 5 8.39E-03 3.70E-02 5.8 

-42 5.63E-02 -58.7 6 8.97E-03 1.55E-02 7.0 

-41 4.61E-02 -56.5 7 7.00E-01 6.74E-01 8.2 

-40 2.40E-02 -54.4 8 6.37E-02 4.49E-02 9.4 

-39 8.95E-03 -52.5 9 2.00E-03 1.90E-03 10.5 

-38 4.58E-03 -50.6 10 1.45E-03 9.93E-04 11.7 

-37 7.14E-03 -48.8 11 1.79E-03 1.30E-03 12.9 

-36 7.11E-03 -47.1 12 1.69E-03 1.06E-03 14.1 

-35 4.36E-03 -45.4 13 1.03E-03 9.61E-04 15.3 

-34 1.27E-03 -43.8 14 4.25E-04 6.72E-04 16.5 

-33 1.74E-03 -42.2 15 2.70E-04 2.59E-04 17.8 

-32 2.91E-03 -40.6 16 3.60E-04 2.87E-04 19.0 

-31 3.27E-03 -39.1 17 4.23E-04 1.79E-04 20.2 

-30 2.46E-03 -37.6 18 3.53E-04 2.21E-04 21.5 

-29 2.01E-03 -36.1 19 2.23E-04 7.71E-05 22.7 

-28 1.14E-03 -34.7 20 1.28E-04 5.70E-05 24.0 

-27 1.47E-03 -33.3 21 9.93E-05 5.84E-05 25.3 

-26 2.02E-03 -31.9 22 8.11E-05 1.32E-04 26.6 



-25 2.37E-03  -30.6 23 7.55E-05 1.71E-04 27.9 

-24 1.89E-03  -29.2 24 5.64E-05 3.37E-04 29.2 

-23 1.60E-03  -27.9 25 4.90E-05 3.16E-04 30.6 

-22 9.60E-04  -26.6 26 5.12E-05 2.50E-04 31.9 

-21 9.25E-04 6.18E-03 -25.3 27 5.09E-05 1.19E-04 33.3 

-20 1.16E-03 1.17E-03 -24.0 28 5.31E-05 1.32E-04 34.7 

-19 1.46E-03 6.30E-03 -22.7 29 5.02E-05 36.1 

-18 1.54E-03 2.99E-03 -21.5 30 5.22E-05 37.6 

-17 1.34E-03 1.02E-02 -20.2 31 5.07E-05 39.1 

-16 1.10E-03 5.31E-03 -19.0 32 4.99E-05 40.6 

-15 6.92E-04 4.66E-03 -17.8 33 4.50E-05 42.2 

-14 6.74E-04 9.15E-03 -16.5 34 4.14E-05 43.8 

-13 4.68E-04 6.40E-03 -15.3 35 3.60E-05 45.4 

-12 7.97E-04 2.00E-03 -14.1 36 3.35E-05 47.1 

-11 9.62E-04 3.42E-03 -12.9 37 3.00E-05 48.8 

-10 1.04E-03 5.07E-03 -11.7 38 2.81E-05 50.6 

-9 1.01E-03 4.42E-03 -10.5 39 2.81E-05 52.5 

-8 8.37E-04 1.62E-03 -9.4 40 2.92E-05 54.4 

-7 4.68E-04 6.20E-04 -8.2 41 3.31E-05 56.5 

-6 4.09E-04 1.53E-03 -7.0 42 3.46E-05 58.7 

-5 2.99E-04 3.13E-03 -5.8 43 3.75E-05 61.0 

-4 3.72E-04 4.57E-03 -4.7 44 3.72E-05 63.5 

-3 7.37E-04 3.98E-03 -3.5 45 3.69E-05 66.2 

-2 1.72E-03 1.84E-03 -2.3 46 3.54E-05 69.3 

-1 2.82E-03 5.06E-04 -1.2 47 3.76E-05 72.9 

 

 Figure 8.  EM-1 and FM-7 measured and calculated grating efficiencies for Littrow configurations at 632.8nm.  The peak around order -42 is from the rear facets of the grooves.  EM-1 and FM-7 are two replicas of the same master; the red curve is data from St. Cloud State and the blue curve is data from NRL.  The black curve is the stray light measured between orders at NRL. 

In Figure 8, two independent measurements of two sister replicas of the master grating are seen to be in good agreement.  This implies that the groove profile is consistent from master to replica.  The calculated efficiencies are in good agreement in the peak orders, and in fair agreement to either side of the peak. Both the measurements and calculations show oscillations in the high order efficiencies, but the calculations are unable to exactly match the measured values. This may be due to the fact that the AFM sample was only 60 microns square and the model profile constructed from this may not contain sufficient detail to fully predict these weak orders.  Also presented in Figure 8 are measurements of the stray light between orders made at NRL.  The stray light is very low for this ruling, but does peak near the working orders and near the backside orders.  This can be understood since the scattering from the groove facets peaks near the specular angle at these two positions. 
 

C. Efficiency calculations versus measured performance for 
the MIGHTI spectral regions  As reported in Table 1 above, the spectral regions measured by the MIGHTI instrument in the green (557.7nm), red (630.0nm) and near infrared (around 760 nm) correspond to the integer rations of 6, 7, and 8, which allows the use of a low order echelle grating to achieve high efficiency at all these spectral regions.     Figure 9 shows calculated efficiencies in orders 5 – 9 for the MIGHTI gratings using the grating groove profile measured by the AFM.  The symbols indicate the measured efficiencies at 557nm and 630nm.  While the 557 nm and 630 nm efficiencies are dominated by the n = 8 and 7 orders, respectively, there are small contributions from the n±1 orders.  These weak orders are minimized in the final master ruling, but still contribute a wavefront inclined to the main order wavefront.  As such, they create a weak, high frequency SHS fringe pattern in addition to the main MIGHTI interferogram.  These high frequency fringes are unresolved in the MIGHTI CCD detectors, result in an unmodulated background, and therefore do not affect wind retrievals. The two larger rectangles in Figure 9 indicate the working range of the IR photometer channels (754 nm to 780nm). Figure 9 illustrates that the calculated and measured efficiencies at 557nm and 630nm are in excellent agreement for the orders shown.  

 Figure 9. Calculated efficiencies from PCGrate (solid lines) versus measured efficiencies (symbols) MIGHTI gratings in orders 5-9.  The two larger rectangles indicate the spectral positions of the IR photometer channels (754 nm to 780nm). 
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 Figure 11.  View looking into the entrance aperture of a MIGHTI interferometer after assembly.  The two gratings are superimposed in this view.  The rectangular blocks are precision spacers that maintain optical gaps while allowing for some thermal mismatch between different optical glasses [11].  A row of laser inscribed fiducial marks is seen on the lower edge of the right grating.  Since the fringe localization plane is at the grating face, these marks will also be in focus at the detector and allow tracking of grating image movements due to thermal distortion etc. [16].  
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